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1. 

In modern tall buildings shear walls are commonly used as a structural element
for resisting the lateral loads that arise from the effects of wind and earthquakes.
The resisting walls are generally located at the sides of the buildings, or arranged
in the form of a core that houses the staircase and lifts. Wall openings are
inevitably required for windows or doors and the resulting structure may be
modelled as a number of solid walls connected by a system of horizontal spandrel
beams, as shown in Figure 1.

Recently, based upon Bert’s formula [1] and coupled wall theory [2], a simplified
formula has been developed by Wong and Wang [3] to predict the fundamental
transverse natural frequency for different types of uniform symmetric multi-storey
building structures. The formula is
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0·5595Dy
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Figure 1. A shear wall with four bands of openings: (a) cross-section; (b) elevation.

where H is the building height, m is mass per unit length along the building height,
EI is flexural rigidity contributed by different columns. The structural
characteristic parameters a2 and k2 are as follows

a2 =
(GA)
EI

, k2 =1+
EI

s (EAc2)j

=1+
EI

EAc2 . (4, 5)

The parameter k2 accounts for the effect of axial deformations of the columns and
walls on the overall flexure and a2 for coupling effects of the connecting beams
between the columns. (EAc2)j for a bent is the flexural rigidity of the column and
wall sectional areas acting about their common centroid. (GA) is the racking shear
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Figure 2. Storey height deflection of a shear wall with multiple bands of openings related to
effective shear rigidity.

rigidity that depends on the structural forms. For coupled shear walls, the shear
wall with one band of openings, the racking shear rigidity is given by

(GA)=
12EIbl2

b3h
. (6)

The purpose of this letter is to extend the developed formula equation (1) from
its application to coupled shear walls to a more complicated structural component,
the shear wall with multiple bands of openings. To achieve this, the shear rigidity
(GA) in terms of structural parameters valid for a shear wall with multiple bands
of openings needs to be established.

2. 

For a shear wall with multiple bands of openings, it is assumed that the racking
shear rigidity (GA) of the bent depends on the flexural rigidity of the connecting
beams between the walls, and the width and spacing of the walls. It is also assumed
that the points of contraflexure occur at the mid-span of the connecting beams.

Considering a storey-height segment of a shear wall and half-storey-height walls
above and below each joint, as shown in Figure 2, the moment acting on wall 1
due to the contraflexure of the connecting beam Ib1 is given by

M1 =
6EIb1

b2
1

D1 +
12EIb1d1

b3
1

D1,

in which D1 = ul1. Thus, the moment M1 can be rewritten as

M1 =$6EIb1 l1
b2

1 01+
2d1

b1 1% · u, (7)

where b1 is a clear span of connecting beams between wall 1 and wall 2; l1 is the
distance between centrodial axes of the wall 1 and wall 2; d1 is the half width of
wall 1; and Ib1 is the second moment of area of the connecting beam between wall
1 and wall 2.



    337

The moment acting on wall 2 due to the contraflexures of the connecting beam
Ib1 and Ib2 is given by

M2 =
6EIb1

b2
1

D1 +
6EIb2

b2
2
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b3
1

D1 +
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b3
2

D2

in which D2 = ul2, and thus the moment M2 can be rewritten as

M2 =$6EIb1l1
b2

1 01+
2d2

b1 1+
6EIb2l2

b2 01+
2d2

b2 1% · u. (8)

Similarly, for any internal wall i, the moments acting on it due to the contraflexure
of the connecting beam Ib,i−1 and Ib,i is

Mi =$6EIb,i−1li−1

b2
i−1 01+

2di

bi−11+
6EIb,ili

b2
i 01+

2di

bi 1% · u (9)

and for the last external wall m, the moment is

Mm =$6EIb,m−1lm−1

b2
m−1 01+

2dm

bm−11% · u. (10)

When a segment of a coupled wall system is subjected to a shear force Q, the
equilibrium of the internal resultant moment and external moment applied to the
segment is

Me =Qh=M1 +M2 + · · ·+Mi +· · ·+Mm (11)

and its deflection is given by

d=
Qh

(GA)
= hu, (12)

from which the shear rigidity of the shear wall with multiple bands of openings
is obtained by

(GA)=
Qh
d

=
12E
h 6Ib1l1

b2
1 01+

d1 + d2
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+· · ·+
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b2
m−1 01+

dm−1 + dm

bm−1 17 . (13)

In the case where only two walls couple together, the formula (13) will become
identical with equation (6) for the shear rigidity of coupled shear walls.



   338

Since it has been assumed that the connecting beams are rigidly connected to
the walls, the effects of any local elastic deformations at the beam-to-wall junctions
on the flexibility of the lamina are ignored. However, such additional flexibility
may be included by simply expanding the beam length. Michael’s correction [4]
in which the ‘‘equivalent beam length’’ should be equal to the beam clear span
plus its depth when such effects are taken into account is adopted in this study.

3.  

3.1. Shear wall with four bands of openings
The symmetrical shear wall with four bands of openings, as shown in Figures

1(a) and (b) with a=4·072 m and b=1 m, is a full scale cross wall of B.R.E.
structural model idealised from the Ronan Point building in London [5] with 18
storeys at 2·62 m. The elastic modulus E of 3·3E+10 N/m2 and density of material
of 2200 kg/m3 are assumed. The thickness of the wall is 0·22 m.

After obtaining the shear rigidity (GA) of the example shear wall from equation
(13) and then substituting it into equations (4) and (5) the dimensionless
characteristic parameters, k and kaH, can be determined. The fundamental
frequency of this wall can be calculated using equation (1) combining equations
(2) and (3).

The fundamental frequencies obtained from the proposed method and that from
finite element analysis using the ANSYS software package (using 2772 eight-node
quadrilateral elements, Plane82, for plane stress and plane strain problems) are
given in Table 1.

Based upon the above example structure, more numerical studies have been
carried out to validate the proposed method for the wall with different structural
parameters and different storey numbers.

3.2. The wall with different storey numbers
The shear wall with four bands of openings and the same structural dimensions

as the above example, except for changing the numbers of storeys, have been
analysed using the proposed method and finite element analysis. The results are
listed in Table 2, and shown in Figure 3. It is shown that the more numbers of
storeys the wall has, the better the agreement between the proposed method and
finite element analysis. The differences are less than 7% for shear walls with more
than six storeys and results from the proposed method are always slightly larger
than those from FEM.

T 1

Comparison between results of proposed analysis and that
from ANSYS FEM analysis for shear wall with four bands

of openings

Methods Fundamental frequency (Hz)

Proposed method 4·265
ANSYS FEM 4·175
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T 2

Comparison between results of proposed analysis and those from ANSYS FEM
analysis for shear wall with four bands of openings and different numbers of storeys

Fundamental frequency (Hz)
Numbers k=1·0147 ZXXXXXXXXXCXXXXXXXXXV
of storeys kaH Proposed method ANSYS FEM

18 14·911 4·265 4·175
17 14·082 4·691 4·578
16 13·254 5·182 5·041
15 12·426 5·753 5·578
14 11·597 6·422 6·203
13 10·769 7·212 6·939
12 9·941 8·156 7·814
11 9·112 9·301 8·870
10 8·284 10·707 10·162
9 7·455 12·471 11·776
8 6·627 14·736 13·841
7 5·798 17·741 16·568
6 4·970 21·898 20·326
5 4·142 28·01 25·823
4 3·314 37·842 34·621

3.3. The wall with different depths of connecting beams
An 18-storey shear wall with four bands of openings and the same structural

dimensions as in section 3.1, except for changing the depth of connecting beams,
has been analysed using the proposed method and finite element analysis. The
results are listed in Table 3, and shown in Figure 4. It is shown that when the depth
of the connecting beam reaches one half of the storey height the coupled wall will
behave like a pierced wall. Beyond that point, the effect of the depth increase of
connecting beams on the fundamental frequency becomes very small. It is also
noted that when the depth of the connecting beams is less than about 0·55 m the
results from the proposed method become smaller than those from FEM. The
reason will be considered in a further investigation.

Figure 3. Comparison between results of proposed analysis and those from ANSYS FEM analysis
for different numbers of storeys. –Q–, Proposed method; –r–, ANSYS FEM.
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T 3

Comparison between results from proposed method and those from ANSYS FEM
for the shear wall with four bands of openings and different depths of connecting

beams

Depth of Fundamental frequency (Hz)
connecting k=1·0147 ZXXXXXXXXXCXXXXXXXXXV
beams (m) kaH Proposed method ANSYS FEM

0·4 9·366 3·561 3·762
0·6 14·428 4·223 4·149
0·8 19·052 4·528 4·346
1·0 23·241 4·672 4·456
1·2 27·048 4·741 4·519
1·4 30·527 4·770 4·558

Figure 4. Comparison between results from proposed method and those from ANSYS FEM for
the shear wall with four bands of openings and different depths of connecting beams. Key as for
Figure 3.

T 4

Comparison between results from proposed method and those from ANSYS FEM
for asymmetrical shear walls

Fundamental frequency (Hz)
First wall depth and ZXXXXXXXXXCXXXXXXXXXV

opening span Proposed ANSYS FEM

a=3·572 m, b=1·5 m 4·143 4·088
a=3·048 m, b=2·024 m 4·076 3·937
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3.4. The asymmetrical wall
The following two examples are given for a shear wall with four bands of

openings with asymmetrical opening span and wall width. All other structural
dimensions are the same as in section 3.1, except for the first wall width and
opening span. The results from the proposed method and those from FEM are
listed in Table 4. Good agreement has been achieved between the two methods.

4. 

A shear wall with multiple bands of openings, which is relatively more
complicated than a single-band structural component, may also be classified into
shear flexure cantilever in which deflection and action are governed by its stiffness
in bending and racking shear. The coupled shear wall, a shear wall with one band
of openings, may be considered as a special case of multiple bands. It is reasonable
to assume that the racking shear rigidity (GA) of the shear wall with multiple
bands of openings depends on the flexural rigidity of connecting beams between
the walls. The previously developed formula has been extended to determine the
fundamental lateral frequency of a shear wall with multiple bands of openings.
Numerical studies have shown that the proposed method can be applied to such
shear walls with asymmetrical wall and opening span. Compared with FEM, it is
much more efficient with high accuracy for such shear walls with more than six
storeys. The accuracy becomes lower for a low-rise building. This is because
equation (3), derived from coupled wall theory, tends to have inherent errors for
low-rise structures.
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